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A new method valid for highly dispersive and highly nonlinear water waves is pre-
sented. It combines a time-stepping of the exact surface boundary conditions with
an approximate series expansion solution to the Laplace equation in the interior
domain. The starting point is an exact solution to the Laplace equation given in
terms of infinite series expansions from an arbitrary z-level. We replace the infi-
nite series operators by finite series (Boussinesq-type) approximations involving up
to fifth-derivative operators. The finite series are manipulated to incorporate Padé
approximants providing the highest possible accuracy for a given number of terms.
As a result, linear and nonlinear wave characteristics become very accurate up to
wavenumbers as high as kh = 40, while the vertical variation of the velocity field
becomes applicable for kh up to 12. These results represent a major improvement
over existing Boussinesq-type formulations in the literature. A numerical model is
developed in a single horizontal dimension and it is used to study phenomena such
as solitary waves and their impact on vertical walls, modulational instability in deep
water involving recurrence or frequency downshift, and shoaling of regular waves up
to breaking in shallow water.

1. Introduction
The classical Boussinesq equations for water waves (see e.g. Peregrine 1967) in-

corporate only weak dispersion and weak nonlinearity and in practice their range
of applicability is limited to kh < 0.75 (where k is wavenumber and h water depth).
Generally, the weak dispersion is the most critical limitation as it directly affects the
accuracy of the wave celerity, which is crucial for most wave dynamics. This short-
coming has attracted considerable attention in the last 10–15 years, and a number of
enhanced and higher-order Boussinesq equations have been formulated to improve
both linear and nonlinear properties. As a result the best forms have extended the
linear range of applicability up to kh ≈ 6 (see e.g. Madsen & Schäffer 1998; Gobbi,
Kirby & Wei 2000). Weak nonlinearity is also a shortcoming, and although several
recent papers have claimed to present so-called fully nonlinear Boussinesq formu-
lations, most of them have incorporated linear far better than nonlinear characteristics
(see e.g. Wei et al. 1995; Madsen & Schäffer 1998, 1999; and Gobbi et al. 2000).

A breakthrough, treating nonlinearity, was made by Agnon, Madsen & Schäffer
(1999, referred to as AMS99 in the following). They presented a new procedure
by which it is possible to achieve the same accuracy in nonlinear properties as in
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linear properties. Their procedure is based on an exact formulation of the boundary
conditions at the free surface and at the sea bottom combined with an approximate
solution to the Laplace equation given in terms of truncated series expansions. The
resulting velocity field is expressed in terms of both the vertical and the horizontal
velocity components at the still-water datum. The result is a system of six coupled
equations with the unknowns being the surface elevation, the horizontal gradient of
the velocity potential at the free surface, and the horizontal and vertical velocities at
the free surface and at the still-water level. As a result the AMS99 formulation allows
an accurate description of dispersive nonlinear waves up to kh ≈ 6.

One problem, which AMS99 did not resolve, is to provide an accurate vertical
distribution of the velocity field. This turns out to be an even more severe restriction
to conventional Boussinesq formulations and most existing formulations can only
produce a reasonable velocity profile for kh 6 0.5. Two exceptions are the formulations
of Nwogu (1993) and Gobbi et al. (2000). Nwogu (1993) expanded the velocity field
from an arbitrary z-level, which was taken to be approximately mid-depth. The
objective of Nwogu was not to improve the velocity profile but the linear dispersion.
Nevertheless, the profile obtained from his lower-order formulation is accurate up to
kh ≈ 1.5 and can be shown to converge up to kh = 3.5 (if higher-order terms are
included). Recently, Gobbi et al. (2000) presented a higher-order formulation based
on a linear combination of the velocities at two arbitrary z-levels. The linear velocity
profile obtained from their method is applicable up to kh ≈ 4, while their dispersion
relation is applicable up to kh ≈ 6.

In the present work, we generalize the procedure of AMS99 and expand the
Laplace solution from an arbitrary z-level rather than from the still-water datum.
The arbitrary z-level is determined by minimizing the depth-integrated error of the
linear velocity profile. However, the possibility of minimizing the error of the linear
dispersion relation is also investigated. In § 2, we present the theoretical formulation
involving exact boundary conditions on the free surface and a truncated series
expansion solution to the Laplace equation. This expansion, which involves fifth-
derivative operators, is manipulated using Padé approximants in order to achieve the
best possible accuracy relative to the number of terms included. In § 3, we perform a
linear analysis to quantify the accuracy of dispersion, shoaling and velocity profiles.
In § 4, we extend the perturbation analysis to weakly nonlinear waves and determine
second- and third-order transfer functions for regular waves, including amplitude-
dispersion and second-order transfer functions for bichromatic waves. The numerical
solution algorithm for two-dimensional problems is presented in § 5, while § 6 presents
different applications of the model, including phenomena such as the propagation of
solitary waves, their impact on vertical walls, Benjamin–Feir-type instabilities in deep
water involving recurrence or frequency downshift, and nonlinear shoaling of regular
waves up to the point of breaking. Concluding remarks are made in § 7.

2. The theoretical formulation
2.1. The exact solution in terms of infinite series expansions

Consider the irrotational flow of an incompressible inviscid fluid with a free surface.
A Cartesian coordinate system is adopted, with the x-axis and y-axis located on the
still-water plane and with the z-axis pointing vertically upwards. The fluid domain is
bounded by the sea bed at z = −h(x, y) and the free surface at z = η(x, y, t). Following
Zakharov (1968), Witting (1984), Dommermuth & Yue (1987) and AMS99, we express
the kinematic and dynamic surface conditions in terms of velocity variables defined
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directly on the free surface, i.e.

ηt − w̃ + ∇η · ũ = 0, (1)

Ṽ t + g∇η + ∇
(
Ṽ · Ṽ

2
− w̃2

2
(1 + ∇η · ∇η)

)
= 0, (2)

where

Ṽ ≡ ũ+ w̃∇η. (3)

Here ũ is the horizontal velocity vector and w̃ is the vertical velocity component,
both defined directly on the free surface. Furthermore, ∇ is the horizontal gradient
operator defined by

∇ ≡
(
∂

∂x
,
∂

∂y

)
.

For details of the derivation of (1)–(3) the reader is referred to AMS99.
Note that (1)–(3) define the fully nonlinear time-stepping problem. However, to

establish a connection between the vertical and horizontal velocity variables at the
free surface, we need to solve the Laplace equation in the interior domain. Following
Madsen & Schäffer (1998, 1999) and AMS99, we first express an exact solution to
the Laplace equation in terms of

u(x, y, z, t) = cos(z∇)u0 + sin(z∇)w0, (4a)

w(x, y, z, t) = cos(z∇)w0 − sin(z∇)u0, (4b)

where u0, w0 are the velocity components at the still-water level z = 0, while the cos-
and sin-operators are infinite Taylor series operators defined by

cos(λ∇) ≡
∞∑
n=0

(−1)n
λ2n

(2n)!
∇2n, sin(λ∇) ≡

∞∑
n=0

(−1)n
λ2n+1

(2n+ 1)!
∇2n+1, (5)

with λ being the expansion coordinate of the Taylor series. Throughout this paper
the interpretation of the powers of ∇ depends on whether this operator is acting on
a scalar or a vector and in this context the following set of rules should be obeyed
(see Madsen & Schäffer 1999, Chap. 5)

∇2nu0 ≡ ∇(∇2n−2(∇ · u0)), ∇2n+1u0 ≡ ∇2n(∇ · u0),

∇2nw0 ≡ ∇2nw0, ∇2n+1w0 ≡ ∇(∇2nw0).

Note that (4a, b) define the velocity profile in the entire water column ranging from
the free surface (z = η) to the sea bed (z = −h) expressed in terms of the velocity
variables at z = 0. The remaining condition necessary to close the system of equations
is the kinematic bottom condition,

wb + ∇h · ub = 0, (6)

where ub, wb are the velocity components at the sea bottom.
As shown by AMS99, a linear analysis of the system of equations (1), (2), (3) and

(6) combined with (4a, b) and (5) recovers the exact linear dispersion relation and
the exact linear shoaling gradient. On the other hand, it is necessary to truncate (5)
in order to establish finite-order equations, which can be solved numerically, and
this process will generally reduce the accuracy of the imbedded linear and nonlinear
properties of the equations. AMS99 included the first three terms in (5) and found
that linear and nonlinear properties were accurate up to a wavenumber times water
depth, kh of 6. This was a major step forward compared to previous Boussinesq
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formulations. Unfortunately, the truncated vertical variation of the velocity profile
(4a, b) is not very accurate, and it quickly deteriorates below the still-water datum for
kh higher than π/2.

In order to relax this limitation, we generalize (4a, b) in the following. The first
step is to introduce û, ŵ which are velocity components taken at an arbitrary level
z = ẑ, where ẑ is assumed to be a constant fraction (σ) of the still-water depth and
thus a function of x and y, except on a horizontal bottom. This generalization of the
formulation by AMS99 is inspired by Nwogu (1993), who was the first to formulate
truncated Boussinesq equations in terms of the horizontal velocity vector defined at
an arbitrary z-level. However, while Nwogu used the free parameter σ to optimize
linear dispersion, the main objective of our formulation is to improve the vertical
profile of the velocity field. We shall return to this issue in § 3.

From (4a, b) we find the relations,

û = cos(ẑ∇)u0 + sin(ẑ∇)w0, (7a)

ŵ = cos(ẑ∇)w0 − sin(ẑ∇)u0. (7b)

In order to invert (7a, b) and determine u0, w0 in terms of û, ŵ, we insert (5) in (7a, b)
and use successive approximations assuming high-derivative terms to be smaller than
low-derivative terms. The inversion process involves higher derivatives of ẑ and in the
following we shall include only terms which are O(∇ẑ) corresponding to a mild-slope
approximation. Finally, we insert the inverted expressions for u0, w0 in (4a, b) and
derive the following mild-slope expression for the velocity field:

u(x, y, z, t) = cos((z − ẑ)∇)û+ sin((z − ẑ)∇)ŵ + Γu∇ẑ, (8a)

w(x, y, z, t) = cos((z − ẑ)∇)ŵ − sin((z − ẑ)∇)û+ Γw · ∇ẑ, (8b)

where

Γu ≡ (z − ẑ)(cos((z − ẑ)∇)∇ · û+ sin((z − ẑ)∇)∇ŵ), (8c)

Γw ≡ (z − ẑ)(cos((z − ẑ)∇)∇ŵ − sin((z − ẑ)∇)∇ · û). (8d)

This completes the formulation of the un-truncated system of equations, which consists
of (1), (2), (3), (6) and (8a–d ) expressed in terms of the unknowns η, û and ŵ. A linear
analysis of this un-truncated system can be found in Madsen, Bingham & Schäffer
(2002), and this recovers the exact linear velocity profile, the linear dispersion relation
and the linear shoaling gradient. An interesting conclusion from this analysis is that
the ∇ẑ terms in (8a, b) have no impact on the imbedded linear shoaling properties.
The ∇ẑ terms do influence the velocity profile but this is a local influence of minor
importance if the bottom slope is mild. Consequently, we shall ignore the Γu,Γw terms
in the present work.

2.2. Finite series expansions involving Padé approximations

We now consider various schemes for truncating the above expansions in such a way
as to achieve the best possible accuracy with a given number of terms. As a starting
point, we follow AMS99 and include the first three terms in both the cos- and the
sin-series defined in (5). This leads to the approximations

cos(λ∇) = 1− λ2∇2

2
+
λ4∇4

24
+ O(λ6∇6), (9a)

sin(λ∇) = λ∇− λ3∇3

6
+
λ5∇5

120
+ O(λ7∇7). (9b)
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By inserting (9a, b) in (8a, b) and analysing the resulting velocity profile, it can be
shown that the accuracy will increase significantly by choosing ẑ = −0.5h, rather than
the ẑ = 0 used by AMS99 (for details see Madsen et al. 2002). On the other hand, it
turns out that an even better accuracy can be achieved by the procedure presented in
the following.

First, we expand the physical velocity variables û, ŵ in terms of utility velocity
variables û∗, ŵ∗ using the connection

û ≡ L(ẑ∇)û∗, ŵ ≡ L(ẑ∇)ŵ∗, (10)

where L is a linear operator to be determined. We note that there is some similarity
between this approach and the previous ideas of Schäffer & Madsen (1995) and
Gobbi et al. (2000) who also used generalized velocity variables rather than physical
velocity variables. However, the choice of the L-operator is very important in this
process, as shown below. We insert (10) in (8a, b) while neglecting the Γu,Γw terms
and obtain

u(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)û∗ + sin((z − ẑ)∇)L(ẑ∇)ŵ∗, (11a)

w(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)ŵ∗ − sin((z − ẑ)∇)L(ẑ∇)û∗. (11b)

Note that at z = 0, (11a, b) simplifies to

u0 = cos(ẑ∇)L(ẑ∇)û∗ − sin(ẑ∇)L(ẑ∇)ŵ∗, (12a)

w0 = cos(ẑ∇)L(ẑ∇)ŵ∗ + sin(ẑ∇)L(ẑ∇)û∗, (12b)

and this now defines the connection between the still-water velocities u0, w0 and the
utility velocities û∗, ŵ∗.

Our objective is to choose L in such a way that the accuracy of (12a, b) is improved
relative to the Taylor expansion given by (9a, b). It is indeed possible to achieve a
much higher order of accuracy without increasing the order of the derivatives if the L
operator is chosen to introduce Padé approximants in the truncated equations. With
this purpose we follow the general procedure described by Madsen & Schäffer (1998)
and AMS99 and define the L operator by

L(λ∇) ≡ 1 +

N∑
n=1

δ2nλ
2n∇2n, (13a)

where δ2n are arbitrary coefficients. To determine these coefficients, we truncate the
infinite cos- and sin-operators at 2N and 2N + 1, respectively, multiply (13a) by each
of the series, and require that all constant-depth terms with powers of N+2 to 2N+1
vanish. For constant λ and for the case of N = 4, this procedure yields

δ2 =
1

18
, δ4 =

1

504
, δ6 =

1

15120
, δ8 =

1

362880
, (13b)

and consequently we obtain

cos(λ∇)L(λ∇) = 1− 4

9
(λ∇)2 +

1

63
(λ∇)4 + O(λ10∇10), (14a)

sin(λ∇)L(λ∇) = λ∇− 1

9
(λ∇)3 +

1

945
(λ∇)5 + O(λ11∇11). (14b)

Note that now the accuracy has become twice the order of the terms included,
which is a typical property of Padé approximants, and with this procedure the
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formal accuracy of (12a, b) has increased from O(∇5) to O(∇9). Unfortunately, this
achievement requires that the L-, cos- and sin-operators have the same argument and
this is only the case at z = 0. Hence, in general the velocity profile given by (11a, b) is
still O(∇5). Nevertheless, the analysis in § 3 will demonstrate that in practice the profile
of (11a, b) is much more accurate than the one obtained from (8a, b) and in addition
this improvement spills over to the imbedded linear and nonlinear properties.

Now the resulting velocity field is determined by inserting (13a, b) in (11a, b) while
ignoring spatial derivatives higher than fifth order. This leads to

u(x, y, z, t) = (1− α2∇2 + α4∇4)û∗ + ((z − ẑ)∇− β3∇3 + β5∇5)ŵ∗ + Λu∇ẑ, (15a)

w(x, y, z, t) = (1− α2∇2 + α4∇4)ŵ∗ − ((z − ẑ)∇− β3∇3 + β5∇5)û∗ + Λw · ∇ẑ, (15b)

where

α2 ≡ (z − ẑ)2

2
− ẑ2

18
, α4 ≡ (z − ẑ)4

24
− ẑ2(z − ẑ)2

36
+

ẑ4

504
, (16a)

β3 ≡ (z − ẑ)3

6
− ẑ2(z − ẑ)

18
, β5 ≡ (z − ẑ)5

120
− ẑ2(z − ẑ)3

108
+
ẑ4(z − ẑ)

504
. (16b)

We note that the Λu,Λw terms proportional to gradients of ẑ arise from the successive
use of the L-, cos- and sin-operators. These terms do influence the accuracy of linear
shoaling, in contrast to the Γu,Γw terms in (8a, b). Their impact will be analysed and
discussed in § 3, where we conclude that these terms can eventually be ignored in the
final model setup.

Although nothing prohibits the use of (15a, b) and (16a, b) from the sea bed to
the instantaneous free surface, it turns out to be more accurate to restrict its use
to the region from the sea bed to the still-water datum. From the still-water datum
to the free surface we apply (8a, b) with the Taylor approximations (9a, b), i.e.

u(x, y, z, t) =

(
1− 1

2
z2∇2 +

1

24
z4∇4

)
u0 +

(
z∇− 1

6
z3∇3 +

1

120
z5∇5

)
w0, (17a)

w(x, y, z, t) =

(
1− 1

2
z2∇2 +

1

24
z4∇4

)
w0 −

(
z∇− 1

6
z3∇3 +

1

120
z5∇5

)
u0. (17b)

The advantage of combining (15a, b) with (17a, b) versus the option of applying
(15a, b) everywhere will be demonstrated in § 4.2 for the case of highly nonlinear
steady waves.

2.3. The kinematic condition at the sea bed

The remaining boundary condition is the kinematic condition at the sea bed. We
insert (11a, b) in (6) and multiply the resulting equation with a new linear operator
M to obtain

M cos((h+ ẑ)∇)L(ẑ∇)ŵ∗ +M sin((h+ ẑ)∇)L(ẑ∇)û∗

+M∇h · (cos((h+ ẑ)∇)L(ẑ∇)û∗ − sin((h+ ẑ)∇)L(ẑ∇)ŵ∗) = 0, (18)

where M will be chosen to optimize the accuracy of linear dispersion.
Constant water depth On a constant depth (18) simplifies to

M cos((h+ ẑ)∇)L(ẑ∇)ŵ∗ +M sin((h+ ẑ)∇)L(ẑ∇)û∗ = 0, (19)

and this determines a connection between ŵ∗ and û∗, which is crucial for the accuracy
of the linear dispersion relation. As discussed above, the doubling of the accuracy of
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(14a, b) relative to (9a, b) requires that the L-, cos- and sin-operators have the same
argument, and this is not the case in (19). However, we can achieve this by requiring
that the M-operator satisfies the conditions

M cos((h+ ẑ)∇)L(ẑ∇) = cos((h+ ẑ)∇)L((h+ ẑ)∇), (20a)

M sin((h+ ẑ)∇)L(ẑ∇) = sin((h+ ẑ)∇)L((h+ ẑ)∇). (20b)

On a constant depth, the solution to (20a, b) is

M ≡ L((h+ ẑ)∇)

L(ẑ∇)
, (21)

where L is given by (13a, b). This expression is not very attractive as it involves a
rational function of operators, and in practice we approximate M by the Taylor series
expansion of (21). Using this operator on (19) now leads to(

1− 4

9
λ2∇2 +

1

63
λ4∇4

)
ŵ∗ +

(
λ∇− 1

9
λ3∇3 +

1

945
λ5∇5

)
û∗ = O(λ10∇10), (22a)

with λ = (h+ ẑ).
Mildly sloping bottom On an uneven bottom, slope terms involving higher deriva-

tives of the water depth will appear due to the successive use of L-, cos-/sin- and
M-operators. In this process we again assume a mildly sloping bottom and include
only first derivatives of h. By truncating the slope terms after the fifth derivatives we
obtain(

1− 4

9
λ2∇2 +

1

63
λ4∇4

)
ŵ∗ +

(
λ∇− 1

9
λ3∇3 +

1

945
λ5∇5

)
û∗

+∇h · (1− c2λ
2∇2 + c4λ

4∇4)û∗ − ∇h · (λ∇− s3λ3∇3 + s5λ
5∇5)ŵ∗ = 0, (22b)

where λ = (h + ẑ), and where c2, c4, s3, s5 are coefficients depending on the choice of
ẑ. A further discussion of these coefficients and their determination is given in § 3.

3. Linear Fourier analysis of dispersion, shoaling and velocity
Linear dispersion and linear shoaling are some of the fundamental quantities imbed-

ded in the governing equations for water wave propagation over varying bathymetry.
In this section, we analyse the new Boussinesq-type formulation and compare to the
well-known results from linear theory.

The following Fourier analysis proceeds from equations (1), (2), (3), (22b) and
(15a, b). First, linearization gives Ṽ = ũ = u0 and w̃ = w0, while (1) and (2) simplify
to

u0t + g∇η = 0, ηt − w0 = 0. (23)

Restricting the analysis to one horizontal dimension, we look for solutions of the
form

η(x, t) = A(x) eiθ, θ ≡ ωt−
∫
k(x) dx, (24a)

û∗(x, t) = (B1(x) + ihxB2(x)) eiθ, (24b)

ŵ∗(x, t) = i(C1(x) + ihxC2(x)) eiθ, (24c)

where i is the imaginary unit, k the wavenumber, ω the cyclic frequency and hx
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the bottom slope, assumed to be small. We note that A, B1, B2, C1 and C2 are real
functions with a slow spatial variation. Due to the sloping bottom, the horizontal
velocity variable will only be in phase with the surface elevation to the lowest order,
which is why the B2 and C2 contributions are necessary. When evaluating higher
derivatives of the harmonic functions, only constant-depth and mild-slope terms are
retained (i.e. zeroth and first derivatives of the slowly varying quantities).

The lowest-order problem neglects all derivatives of the slowly varying quantities
and leads to three homogeneous equations in A,B1, C1. We express B1, C1 in terms of
A, and require that the determinant is zero to obtain non-trivial solutions. This leads
to

B1 =
A

ω

(
ω2 sh(kẑ) + gk ch(kẑ)

ch2(kẑ)− sh2(kẑ)

)
, (25a)

C1 =
A

ω

(
ω2 ch(kẑ) + gk sh(kẑ)

ch2(kẑ)− sh2(kẑ)

)
, (25b)

and the dispersion relation

ω2

ghk2
=

1

kh

(
sh(k(h+ ẑ)) ch(kẑ)− ch(k(h+ ẑ)) sh(kẑ)

ch(k(h+ ẑ)) ch(kẑ)− sh(k(h+ ẑ)) sh(kẑ)

)
, (25c)

where the ch and sh functions are defined by

ch(λ) ≡
(

1 +
4

9
λ2 +

1

63
λ4

)
, sh(λ) ≡

(
λ+

1

9
λ3 +

1

945
λ5

)
. (26)

Note that if infinite operators are applied, the ch and sh functions should be replaced
by the cosh- and sinh-functions, by which the denominators in (25a, b) go to unity
and (25c) simplifies to

ω2

ghk2
=

1

kh

(
sinh(k(h+ ẑ)− kẑ)
cosh(k(h+ ẑ)− kẑ)

)
=

tanh(kh)

kh
, (27)

recovering the exact linear dispersion relation.

3.1. The accuracy of the linear dispersion relation

For the special case of ẑ = 0 (considered by AMS99), the dispersion relation (25c)
simplifies to

c2

gh
≡ ω2

ghk2
=

1 +
1

9
k2h2 +

1

945
k4h4

1 +
4

9
k2h2 +

1

63
k4h4

, ẑ = 0,

which is the Padé [4, 4] approximation to the target solution (27). For arbitrary
ẑ = σh, (25c) will contain powers of kh up to 8 in the numerator and 10 in the
denominator. We check the formal order of accuracy by making a series expansion of
this expression from kh = 0 and this leads to errors relative to fully dispersive theory
at k10h10 for arbitrary σ. In reality, the applicability of (25c) depends on the choice
of σ. One option is to use σ to minimize the error of (25c), i.e.

1

κ0

∫ κ0

0

(
c− cS
cS

)2

dkh,

where cS is determined from (27). With κ0 = 25 this leads to σ = −0.2028, which is
approximated by σ = −0.2.
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0.98

0.96
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c2
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Figure 1. The accuracy of the square of the phase celerity using (25c) and (26). (i) σ = −0.2;
(ii) σ = −0.5; (iii) Padé [8, 10] expansion of target solution; (iv) σ = 0, Padé [4, 4].

The celerity is shown in figure 1 for σ = −0.2 (optimal celerity) and for σ = −0.5
(optimal velocity distribution to be discussed below). In both cases the accuracy
is significantly better than what was achieved with the Padé [4, 4] approximation
(AMS99) and at least as accurate as the Padé [8, 10] approximation. A 2% error is
reached at kh = 25 for σ = −0.5 and at kh = 40 for σ = −0.2.

3.2. The accuracy of the velocity field on a constant depth

The linear velocity field is determined by inserting (24b, c), (25a–c) and (26) into
(15a, b). To quantify the accuracy of the vertical variation of the horizontal velocity
component, we introduce the measures

Fu1(σ, kh) ≡
√

1

h

∫ 0

−h

(
u(z)− uS (z)

uS (0)

)2

dz, Fu2(σ) ≡
√

1

κ0

∫ κ0

0

F2
u1 dkh, (28)

where uS denotes the target velocity according to Stokes linear theory. Similar mea-
sures Fw1 and Fw2 apply for the vertical velocity component. Figure 2(a) shows the
variation of Fu1 as a function of σ for discrete values of kh in the interval from 2 to
12. All the curves show a minimum error for σ ≈ −0.5 for which the depth-integrated
error is limited to less than 2% for kh as large as 12. We calculate Fu2 as defined by
(28) and minimize this function to determine the optimal value of σ. With κ0 = 10,
this leads to σ = −0.48921 for which (Fu2, Fw2) = (0.0042, 0.0043). For simplicity we
choose σ = −0.5 for which (Fu2, Fw2) = (0.0045, 0.0046).

Figure 2(b) shows Fu1 and Fw1 as functions of kh for σ = −0.5 and we notice that
it provides depth-integrated errors of 1% for kh ≈ 9.5 and 2% for kh ≈ 12. For
reference, figure 2(b) also shows the performance of the velocity profile determined
from (8a, b) with (9a, b), e.g. the profile obtained without invoking the L- and M-
operators. Also in this case the optimal choice of σ turns out to be σ ≈ −0.5, but
clearly the applicability of this profile is much more restricted.

Finally, it should be emphasized, that the choice of σ = −0.2 (optimum celerity)
leads to a relatively poor velocity profile according to figure 2(a). The solution to this
problem is to replace (16a, b) with optimized velocity coefficients. Such a procedure
is described in Madsen et al. (2002).



10 P. A. Madsen, H. B. Bingham and H. Liu

6 8 10 12

4

–1.0 –0.8 –0.6 –0.4 –0.2
σ

0.03

0.02

0.01

kh = 2

Fu1

(a)

0.3

0.02

0.01

2 4 6 8 10 12 14
kh

Fu1 Fw1 Fw1 Fu1

(b)

V
el

oc
it

y 
er

ro
rs

Figure 2. (a) The depth-averaged error in the horizontal velocity component shown as a function
of σ for discrete values of kh. Velocity profile based on (15a, b) and (16a, b). (b) The depth-averaged
error in the horizontal and vertical velocity components. Full line: (15a, b) and (16a, b), dashed line:
(8a, b) and (9a, b); σ = −0.5.

3.3. The accuracy of linear shoaling

We continue the linear analysis to the next order and collect terms proportional to
the first derivatives of the variables. This leads to three inhomogeneous equations
with the unknowns Ax, B2, C2 expressed in terms of kx, hx and the first derivatives of
B1, C1. The latter derivatives can be expressed in terms of Ax, kx, hx by differentiation
of (25a, b), while differentiation of the dispersion relation (25c) yields kx in terms of
hx. As a result, we can determine Ax, B2, C2, and finally the linear shoaling gradient γ
is determined by the definition

Ax

A
= −γ hx

h
. (29)

The result is a function of σ and it can be compared to the target solution, which
was derived by Madsen & Sørensen (1993) using energy flux conservation combined
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with Stokes linear theory,

γS =
2kh sinh(2kh) + 2k2h2(1− cosh(2kh))

(2kh+ sinh(2kh))2
. (30)

We check the formal accuracy of the resulting shoaling gradient by comparing the
Taylor series expansions from kh = 0.

First, we consider the case where Λu, Λw in (15a, b) as well as c2, c4, s3, s5 in (22b)
are determined from a consistent successive use of the L-, cos / sin- and M-operators.
Including up to fifth-derivative slope terms leads to a formal error in the shoaling
gradient of O(k6h6). This is disappointing, but the error can be reduced to O(k10h10)
if we also include the sixth-derivative slope terms in Λu, Λw in (22b).

A much more attractive approach is, however, to neglect the Λu, Λw-terms com-
pletely, while considering the c2, c4, s3, s5-coefficients in (22b) as free parameters. For-
mally, this corresponds to replacing the M-operator with M+N∇h, where N contains
a number of free parameters which can be adjusted to improve the accuracy of the
slope terms. With this approach we could use c2, c4, s3, s5 to cancel the formal errors
of the shoaling gradient up to O(k10h10), but in fact we can do better than that by
optimizing either the shoaling gradient or the accumulated shoaling. Chen & Liu
(1995) advocated the latter choice, because relative errors in the shoaling gradient are
far more critical in shallow water than in deep water. Hence they suggested optimizing

A

AS
= exp

(
−
∫ κ0

0

γ − γS
k0h

dk0h

)
, (31)

where A/AS is the accumulated shoaling amplitude over the target amplitude and k0

is the linear deep-water wavenumber. This integration involves the relevant dispersion
relations to connect the local wavenumbers to the fixed deep-water wavenumber.

We have attempted to optimize (31), but have not succeeded due to the complexity
of terms involved. Instead, we optimize

F3(c2, c4, s3, s5) ≡
∫ κ0

0

1

kh
(γ − γS )2 dkh, (32)

where the division by kh will emphasize the importance of keeping errors to a
minimum in shallow water.

With κ0 = 30 this procedure leads to
σ = −0.5:

c2 = 0.357739, c4 = 0.00663819, s3 = 0.0753019, s5 = −6.31532× 10−5.

σ = −0.2:

c2 = 0.369651, c4 = 0.00510326, s3 = 0.0656786, s5 = −1.84353× 10−4.

As a check, we compute (31) for the optimized coefficients and find that the relative
errors of the accumulated shoaling amplitudes are less than 0.5% for 0 < kh < 30.

4. Analysis of nonlinear properties
4.1. Transfer functions for subharmonics and superharmonics

In order to analyse the accuracy of second-order subharmonic and superharmonic
interactions, we consider on a constant depth the forcing due to a simple first-
order wave group made up of just two frequencies ωn and ωm. At second order,
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Figure 3. The accuracy of the second order transfer functions, Gη/G
Stokes. Superharmonic G+

η shown
above the diagonal; subharmonic −G−η shown below it. Computed with σ = −0.2. Note that Ω = 1.0
corresponds to kh = 39.5.

quadratic nonlinearities will force a wave train consisting of four contributions:
one subharmonic at ωp = ωn − ωm, and three superharmonics at ωp = ωn + ωm,
ωp = 2ωn and ωp = 2ωm with corresponding wavenumbers determined by kp =
kn − km, kp = kn + km, kp = 2kn and kp = 2km. These waves are bound or phase-
locked to the first-order wave train and (ωp, kp) does not satisfy the linear dispersion
relation. G±η denotes the second-order surface elevation transfer function, where
the subharmonic/superharmonic contributions are found by using the lower/upper
signs. The reference solution G±Stokes

η , determined directly from the original nonlinear
boundary value problem for the Laplace equation, was given by e.g. Ottesen-Hansen
(1978) for the subharmonics and Sand & Mansard (1986) for the superharmonics
(see also Dean & Sharma 1981 and Schäffer 1996).

Figure 3 shows the variation of the ratio of G±η to G±Stokes
η as a function of the

non-dimensional interacting frequencies Ωn and Ωm, where

Ωn =
ωn

2π

√
h

g
, Ωm =

ωm

2π

√
h

g
.

We note that the corresponding wavenumbers are determined by solving the dispersion
relation which leads to (Ω, kh): (0.2, 1.7), (0.4, 6.3), (0.6, 14.2), (0.8, 25.2), (1.0, 39.5). The
portion above the diagonal in figure 3 represents the superharmonic transfer from
ωn and ωm to ωp = ωn + ωm, while the lower portion represents the subharmonic
transfer from ωn and ωm to ωp = ωn − ωm. The diagonal line on which ωn equals ωm
represents the self–self interaction. With σ = −0.2 the transfer functions are seen to
have an outstanding accuracy with errors less than 1% up to (Ω, kh) ≈ (0.8, 25.2) and
less than 5% up to (Ω, kh) ≈ (0.9, 32). The largest errors occur in the subharmonic
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transfer function in the upper right corner just below the diagonal, where the ratio
goes to 2.4. Above the diagonal (right upper corner) the ratio goes to 1.06, while the
ratio becomes 1.1 in the upper left corner and as well as in the lower right corner.

4.2. Finite-amplitude analysis for strongly nonlinear steady waves

In this section, we investigate a spectral solution of the new equations for highly
nonlinear steady waves, and compare it to a spectral solution of the exact equations.
The analysis is restricted to one horizontal dimension and to a constant depth and it
involves the governing equations (1), (2), (3) and (22a) combined with (15a, b), (16a, b)
and (17a, b). Fenton (1988) formulated the problem in terms of the stream function,
which provides some computational advantages, due to the relative simplicity of the
kinematic surface condition. Here we use a slightly different procedure, which is closer
to our formulation of the new Boussinesq equations.

In a frame of reference moving at the speed c, the problem is steady and the free
surface conditions (1) and (2) reduce to

−w̃ + ũηx = 0, gη +
ũ2

2
+
w̃2

2
= R, (33)

where R is the Bernoulli constant. The new Boussinesq equations can be solved to
a very high degree of accuracy in the following way: First we expand the surface
elevation and the velocity variables at ẑ in terms of the Fourier series

η(x) =

M∑
j=1

Aj cos (jkx), (34a)

û∗(x) = ū+

M∑
j=1

Bj cos (jkx), ŵ∗(x) =

M∑
j=1

Cj sin (jkx). (34b)

Next, the bottom boundary condition leads to the constraint

Cj = λj

1 +
1

9
λ2
j +

1

945
λ4
j

1 +
4

9
λ2
j +

1

63
λ4
j

Bj, λj = jk(h+ ẑ). (34c)

Now (17a, b) is used to establish a connection between ũ, w̃ and u0, w0 while (15a, b)
and (16a, b) are used to establish the connection between u0, w0 and û∗, ŵ∗. Given
the four inputs H (wave height), h (water depth), L (wavelength), and ūE (the mean
Eulerian velocity), there are three kinematic constraints,

H = η(0)− η
(
L

2

)
, c =

L

T
, c+ ū− ūE = 0,

plus the free-surface boundary conditions (33). The dynamic surface condition is
applied at M+ 1 equally spaced points from the wave trough to wave crest, while the
kinematic condition is applied at M staggered points (mid-way between the others).
This gives 2M+ 4 nonlinear equations for the unknowns T (wave period), c, ū, R and
the coefficients Aj and Bj . The system is readily solved using Newton’s method with
linear theory as the initial conditions. With slight modifications, the same technique
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can be used to solve the fully dispersive problem simply by replacing (34b) by

u(x, z) = ū+

M∑
j=1

Bj
cosh(jk(z + h))

cosh(jkh)
cos(jkx),

w(x, z) =

M∑
j=1

Bj
sinh(jk(z + h))

cosh(jkh)
sin(jkx).

First, we consider the case of a highly nonlinear deep-water wave with h/L = 0.135
and kh = 10 and the results are computed with σ = −0.5. Figure 4(a) shows the
spatial variation of the horizontal surface velocity normalized by the wave celerity,
which is 1.09 times the linear celerity. The result is in perfect agreement with the
exact solution. In figure 4(b) we show the corresponding vertical distribution of
the horizontal velocity under the wave crest. Again this is in good agreement with
the stream function solution (full line) over the entire water column although small
discrepancies can be noticed below the still-water datum. Finally, in figure 5 we show
the relative errors of the computed horizontal crest velocities for H/L = 0.12 and
using two different values of σ. Note that with an error bound of 2% we find that
σ = −0.5 is limited by kh < 25 while σ = −0.2 is limited by kh < 39. For reference
figure 5 also includes a computation using (15a, b) and (16a, b) all the way to the free
surface, and obviously this is much less accurate than the combination of (15a, b) and
(17a, b).

5. Numerical solution procedure
In order to solve more general problems, a finite-difference solution to the new equa-

tions has been developed in a single horizontal dimension. N equally spaced points
are distributed along the x-axis, and the equations are enforced at these N points.
All continuous derivative operators are replaced by finite-difference approximations.
This results in a set of matrix equations

[ũ] = A1[u0] + B1[w0], [w̃] = −B1[u0] + A1[w0], (35a, b)

[u0] = A2[û
∗] + B2[ŵ

∗], [w0] = −B2[û
∗] + A2[ŵ

∗], (35c, d )

and

A3[û
∗] + B3[ŵ

∗] = 0, (35e)

where a quantity in square brackets represents a vector of values at the N grid
points. The Ai and Bi (for i = 1, 2, 3) are the finite-difference matrices resulting from
discretization of (17a, b), (15a, b) and (22b). If (3) is invoked, (35a–e) can be written
as the following linear system of equations:

A1 − [ηx]B1 B1 + [ηx]A1 0 0

−I 0 A2 B2

0 −I −B2 A2

0 0 A3 B3




[u0]

[w0]

[û∗]
[ŵ∗]

 =


[Ṽ ]

0

0

0

 , (36)

where I is the identity matrix. This system determines (u0, w0, û
∗, ŵ∗) for given values

of (η, Ṽ ) at each grid point. Using the solution in (35b) then provides w̃, which allows
the free-surface boundary conditions to be stepped forward in time and the process
repeated.
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Figure 4. Steady deep water wave with kh = 10 and H/L = 0.135. (a) The spatial variation of
the horizontal and vertical surface velocities. (b) The vertical distribution of the horizontal velocity
under the wave crest. Full line: exact stream-function solution; dashed line: new formulation with
σ = −0.5.
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Figure 5. Errors in the horizontal crest velocity (ũc) relative to the stream-function solution (ũc,e).
Steady waves with H/L = 0.12. (i) New formulation with a combination of (15a, b) and (17a, b) for
σ = −0.2; (ii) new formulation with a combination of (15a, b) and (17a, b) for σ = −0.5; (iii) using
(15a, b) from the bottom to the free surface and σ = −0.5.
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In order to apply up to fifth-derivative operators, a minimum stencil size of seven
points is used. All derivatives make use of the entire stencil which means that lower
derivatives are of higher accuracy than higher ones. The fifth-order Cash–Karp–
Runge–Kutta scheme is used for the time integration, which provides a running
estimate of the error. This scheme is generally stable, although high-frequency insta-
bilities are encountered when the waves become extremely nonlinear. Savitsky–Golay
smoothing is applied at the stencil size, in order to continue these highly nonlinear
calculations.

Each of the matrices Ai and Bi is banded with at least seven bands, which gives the
system as written in (36) a fairly complicated sparsity structure. However, a simple
re-ordering of the variables, where all velocities and equations at each grid point are
grouped together, will reduce the matrix in (36) to a banded form with at least 25
bands. Since A1 and B1 are time-dependent, the matrix must be re-built and factored
at each time step, but the work is still O(N) since the matrix is banded.

In many cases, an explicit iteration procedure (e.g. Dommermuth & Yue 1987) can
be used to satisfy the nonlinear free-surface conditions, effectively replacing (35a, b)
with multiple solutions of (35c) and (35e). In this case the smaller time-independent
system reads (

A2 B2

A3 B3

)(
[û∗]
[ŵ∗]

)
=

(
[u0]
0

)
. (37)

This can be LU-factored once and for all, and the solution obtained by J back-
substitutions at each time step (where J , the number of nonlinear iteration steps, is
typically 4 or 5). This leads to a substantial reduction in the total effort of solution.

6. Numerical results
In this section we consider several applications of the model, all of which are

severe tests normally beyond the reach of conventional Boussinesq-type formulations:
(a) computation of surface profile and interior kinematics in steady highly nonlinear
solitary waves; (b) reflection of solitary waves from a vertical wall; (c) sideband
instability of nonlinear deep-water wave trains; (d ) nonlinear shoaling up to the
point of breaking on a mildly sloping beach. While (a)–(c) are on a constant depth,
(d ) deals with the case on an uneven bottom bathymetry. While (a) and (b) deal with
highly nonlinear waves in shallow water, (c) involves modulational instability and
wave–wave interactions in deep water.

6.1. The kinematics of high solitary waves

The problem considered in this section is that of a solitary wave propagating on a fluid
at rest over a horizontal bottom. Major contributions to the theoretical understanding
of this phenomenon are due to Russell (1838), Boussinesq (1872), Rayleigh (1876),
Yamada (1957), Longuet-Higgins & Fenton (1974), Miles (1980), Williams (1985)
and Tanaka (1986). Among these, the most striking discovery is probably due to
Longuet-Higgins & Fenton, who found that quantities such as wave celerity, mass,
momentum and energy for the solitary wave all attain a maximum value for a wave
of less than maximum height. Furthermore, it is generally acknowledged that the
numerical results of Williams (1985) and Tanaka (1986) are extremely accurate even
for the highest waves and we shall use these as reference solutions in the following
verification.

We consider a constant water depth of 1.0 m, a grid size of 0.05 m and a time step
of 0.025 s. The boundary conditions at the end of the model domain are determined
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Figure 6. The vertical profile of the horizontal velocity under the crest of a solitary wave.
h = 1.0 m, a/h = 0.65, c/c0 = 2.653, dx = 0.05 m, dt = 0.025 s. Computed with σ = −0.5.
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Figure 7. The wave celerity and the crest velocity versus wave amplitude for solitary waves.
h = 1.0 m, dx = 0.05 m, dt = 0.025 s. Computed with σ = −0.5.

by computing the surface elevation and the surface velocity directly from Tanaka’s
solution. Any discrepances between the input solution and the approximate solitary
wave solution to the Boussinesq equations will show up as a dispersive tail which is
left behind. The higher the solitary wave, the faster the dispersive tail will separate
from the main wave due to amplitude dispersion, and the faster a new wave of
permanent form will be achieved. The celerity of the wave is determined by letting
the established permanent-form solution propagate further over a distance of 10–20
times the water depth, tracking the position of the crest of the wave.

At this resolution, the initial conditions by Tanaka (1986), turn out to be steady up
to a steepness of a/h = 0.75, after which some small tails begin to appear. However,
more impressive is the comparison of the vertical distribution of the horizontal
velocity, as shown in figure 6 for a/h = 0.65, which is seen to be in almost perfect
agreement with Williams’ profile all the way from the sea bed to the free surface. This
result is clearly more accurate than what was achieved by Gobbi et al. (2000).
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Figure 7(a, b) shows the wave celerity and crest velocity for a number of solitary
waves, varying the relative amplitudes a/h from 0.1 to 0.83. Again an excellent agree-
ment with Williams’ solution is obtained except for the highest waves. Inaccuracies
do occur for relative amplitudes a/h higher than 0.78 and the problem is most likely
connected to the sharpening of the wave crest, which for the highest solitary waves
rapidly approaches the limiting angle of 120◦. This makes it difficult to resolve the
finest details with a finite-difference formulation and it is expected that numerical dif-
fusion is introduced by the successive use of fifth-order spatial derivatives, a problem
which was also recognized by Gobbi et al. (2000).

6.2. Reflection of solitary waves from a vertical wall

In this section we study nonlinear reflection of high-amplitude solitary waves from a
vertical wall. When low-amplitude solitary waves collide with a vertical wall they may
behave as solitons and reflect without reduction in height and speed. This is, however,
not the case for highly nonlinear solitary waves, where the reflected wave will lose
energy to a dispersive tail, so that the height and the speed of the reflected wave is
smaller than before the collision. These phenomena have been studied experimentally
by Maxworthy (1976), analytically by e.g. Su & Mirie (1980) and Wu (1995, 1998,
1999), and numerically by Mirie & Su (1982) who used Boussinesq equations, by
Fenton & Rienecker (1982) using a Fourier method, and by Grilli & Svendsen (1990)
and Cooker, Weidman & Bale (1997) using a boundary-integral method for solving
the Euler equations with fully nonlinear boundary conditions.

As discussed by Cooker et al. (1997, hereinafter referred to as CWB97), the following
sequence of events occurs during the impact of the solitary wave: Initially the incident
wave propagates with constant speed and constant wave height. When the crest is less
than about twice the water depth from the wall the crest accelerates significantly. At
the instant ta (the so-called attachment time) the wave crest has ‘snapped through’ to
the wall with a corresponding elevation ηa. With some delay, at time t0 the maximum
run-up occurs with an elevation η0, which can be several times larger than the
incoming amplitude. After a further delay, the wave crest leaves the wall at td, the
so-called detachment time, with an elevation ηd, which is always less than ηa. CWB97
found that t0 − ta < td − t0, i.e. it always takes more time for the waterline to fall
than to rise. The total time during which the crest is attached to the wall is called
the wall residence time tr = td − ta. At the stage of detachment, the crest leaves the
wall at a very high speed, but quickly decelerates to a constant speed which is slightly
lower than the incoming speed. For small-amplitude and moderate-amplitude solitary
waves there will be very little difference in wave height and wave speed compared to
the perfect reflection soliton behaviour.

In the following we compare our numerical results with the boundary integral
method of CWB97. Figure 8 shows a number of snapshots of the computed surface
elevation for a solitary wave with a/h = 0.7 moving from right to left. We note
that the maximum runup is somewhat smaller than the one computed by CWB97
but in both cases it is significantly larger than twice the incoming amplitude. For
this highly nonlinear case our computations break down during the downrush phase,
similar to the behaviour reported by CWB97. For a/h < 0.7, computations are stable
after the reflection also, and the computed wave crest amplitudes for a/h = 0.5 are
shown as a function of time in figure 9. The attachment and detachment times are
indicated with markers and show that the elevation at the detachment time is always
smaller than that at attachment. A series of simulations have been made with the
nonlinearity parameter a/h ranging from 0.05 to 0.70 and we show the resulting
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Figure 8. Reflection of a solitary wave from a vertical wall. Snapshots of the surface elevation
moving from right to left. a/h = 0.70, h = 1.0 m, dx = 0.05 m, dt = 0.025 s. Computed with σ = −0.5.
Dot: maximum runup as computed by CWB97.
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Figure 9. Reflection of a solitary wave from a vertical wall. Maximum surface elevation in the
domain showing the attachment and detachment times. a/h = 0.50, h = 1.0 m, dx = 0.05 m,
dt = 0.025 s. Computed with σ = −0.5.

computed attachment and detachment crest amplitudes and the maximum runup in
figure 10. They are seen to be in very good agreement with the results obtained by
CWB97 using their boundary-integral method.

Next, we have determined the instantaneous wall force by integrating the pressure
distribution over the wall from the sea bed to the free surface. The pressure distribution
is obtained by integrating the vertical Euler equation from the free surface to an
arbitrary z-datum. Figure 11 shows the computed force as a function of time relative to
t0, for selected incoming values of a/h. Except for the highest waves, our computations
agree very well with the results of CWB97. For a/h = 0.6 some discrepancies occur,
especially during the downrush, but it is unlikely that any of these calculations are
especially accurate due to the violence of the flow and the subsequent breakdown of
the numerics.
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Figure 11. Reflection of a solitary wave from a vertical wall. Time variation of depth-integrated wall
force computed for a range of different incoming wave amplitudes (a/h = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6).
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The overall trend in figure 11 is that for a/h up to 0.3 the wall force is single
peaked while it becomes double peaked for higher waves. The mechanism behind this
variation is illustrated in figure 12, where we split up the pressure into a hydrostatic
part (measured from the instantaneous position of the surface) and an acceleration
part (including nonlinear velocity terms and the temporal derivative of the vertical
velocity). For small waves, the force is dominated by hydrostatic pressure and it has
a single maximum which occurs at t0, i.e. at the time of maximum runup. For larger
values of a/h, the vertical acceleration of the flow becomes more important, especially
during the phase where the water is pushed up the wall. This increases the pressure
above the hydrostatic value and a local maximum occurs before the maximum runup.
During the phase of maximum runup, the acceleration forces are counteracting the
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Figure 12. Reflection of a solitary wave (a/h = 0.6) from a vertical wall. Full line: total depth-
integrated wall force; dashed line: static contribution; dashed-dot line: dynamic contribution.

hydrostatic forces, which leads to a local minimum. After the maximum runup, the
water slides back down the wall and at the end of this descent the deceleration
again increases the pressure above the hydrostatic value and creates a second slightly
smaller peak in the force. We note that this double-peak pressure behaviour for highly
nonlinear waves was also observed by Bredmose et al. (2002) in connection with wave
sloshing in a tank.

6.3. Sideband instability of nonlinear wave trains

In this section we study modulational instability of deep water waves. Benjamin
& Feir (1967) showed theoretically and experimentally that weakly nonlinear deep-
water waves can be unstable to modulational perturbations under certain conditions.
They considered a wave train consisting of a carrier wave at frequency ω and two
small-amplitude sideband waves at frequencies ω(1− δ) and ω(1 + δ), i.e.

η = a cos (ωt− kx) + βa cosΘ1 + βa cosΘ2,

Θ1 = ω(1 + δ)t− k1x+Ψ1, Θ2 = ω(1− δ)t− k2x+Ψ2.

Quartet interactions between these wave components can lead to near resonance given
the conditions

2ω − ω1 − ω2 = 0, 2k − k1 − k2 = ∆k,

where ∆k is a wavenumber mismatch which will de-tune the resonance. For linear
deep-water waves, we have

k =
ω2

g
, k1 = k(1 + δ)2, k2 = k(1− δ)2, ∆k = 2kδ2,

and consequently the de-tuning will be small if δ is small. However, Benjamin &
Feir showed that amplitude dispersion can eliminate the de-tuning under certain
circumstances, and this will produce resonance where the sideband waves can grow
exponentially. According to their theory the most unstable situation occurs when

δ = ka, Ψ1 = Ψ2 =
π

4
.
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Figure 13. Snapshot of the spatial variation of the surface elevation for nonlinear wave trains with
sideband perturbations. h = 2πm, T = 2.006 s, k = 1 m−1, kh = 2π, ka = 0.1, δ = ka, β = 0.05,
dx = 0.2 m, dt = 0.0625 s. Computed with σ = −0.5.

Benjamin & Feir’s theory describes the onset of the instability and the initial growth
of the sidebands. Higher-order stability theories have been given by e.g. Crawford
et al. (1981) and McLean (1982), and other milestones within this field have been
provided by Lake et al. (1977), Melville (1982) and Lo & Mei (1985).

Numerical simulations of the phenomenon of modulational instability have typically
been conducted on the basis of various forms of the nonlinear Schrödinger equations,
the Zakharov equations or fully nonlinear boundary integral methods. So far most
simulations have been made utilizing spatially periodic boundary conditions to keep
the computational domain small (see e.g. Dold & Peregrine 1986; Dommermuth &
Yue 1987; Landrini et al. 1998; Henderson, Peregrine & Dold 1999). Exceptions are
Tulin, Yao & Wang (1994) and Mayer, Garapon & Sørensen (1998), who simulated
the spatial and temporal evolution in a long wave tank.

Until now, Boussinesq formulations have not been applied for this purpose, because
of their shallow-water limitations. As discussed by AMS99, the accurate modelling of
sideband instabilities requires an accurate description of amplitude dispersion, and
of the first and second derivatives of ω with respect to k (i.e. ωk and ωkk). Of these
quantities, the latter is the most critical for Boussinesq-type formulations, and AMS99
found that with a Padé [4, 4] dispersion relation the applicability would be restricted
to kh up to about 3. In our present formulation, the linear dispersion relation is given
by (25c) and (26) and the resulting accuracy of ωωkk relative to the target value from
fully dispersive theory can easily be determined: with a 5% error criterion we find
the following limitations: kh < 13.8 with σ = −0.5 and kh < 21.5 with σ = −0.2.

6.3.1. Recurrence

Our first test case is inspired by Mayer et al. (1998), who used a fractional step
method with a surface adaptive grid to solve the two-dimensional Euler equations in
a tank covering about 130 wavelengths. The depth is 2πm and at the boundary a
carrier wave and two sideband waves are generated. The period of the carrier wave
is 2.006 s, which corresponds to k = 1.0 m−1, i.e. a wavelength of 2πm. The initial
amplitude of the carrier wave is a = 0.1 m, i.e. ka = 0.1. For the sideband waves, we
use δ = ka, β = 0.05 and a phase shift of π/4. We extend the computational domain
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Figure 14. Spatial evolution of the amplitudes of the carrier wave and the two sidebands. Computed
with σ = −0.5. Full line: carrier wave amplitude; dashed-dot line: lower sideband amplitude; dashed
line: upper sideband amplitude; line with symbols: theoretical prediction from Benjamin & Feir
theory. (a) Data as shown in figure 13. (b) As (a) but with ka = 0.105 and δ = 0.100.

to cover 1600 m, i.e. approximately 250 wavelengths. An absorbing sponge layer is
applied at both ends of the model domain to keep reflections to a minimum.

Figure 13 shows the computed spatial variation of the surface elevation after
1300 s. Close to the boundary we notice the weak beating between the carrier and
its sidebands with a beat length of approximately 5 wavelengths. Due to the growth
of the sidebands this beating increases and after 63 wavelengths we observe the
formation of a massive wave pulse with amplitudes reaching 0.26 m. The process is
recurrent and after 134 wavelengths the wave train has returned to its initial state.
Then a new massive wave pulse appears at 204 wavelengths. We note that Mayer
et al. (1998) found the maximum peak to be only 0.19 m, but they also found that the
waves approaching the first point of recurrence at x/L ≈ 130 had lost about 20%
of their initial heights due to numerical damping. In the present simulation there is
no sign of energy loss, and although the two pulses are not identical, they do reach
approximately the same height.

In figure 14(a) we show the spatial evolution of the carrier and sideband amplitudes,
and notice that the initial growth rate of the sidebands is in good agreement with
Benjamin & Feir’s prediction. A feature not predicted by Benjamin & Feir is that
the upper sideband initially grows slightly faster than the lower one, while the lower
sideband becomes larger than the upper sideband near the peak modulation. This
unequal growth of lower and upper sidebands was first demonstrated in detail by
Lo & Mei (1985), by using Dysthe’s (1979) extension of the Schrödinger equation.
The distance between the two massive wave pulses in figure 13 and between the
two minima of the carrier amplitude in figure 14(a) is found to be 141 wavelengths.
In order to validate this result, we compare with a similar investigation made by
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Landrini et al. (1998), who used a boundary-integral method with spatially periodic
boundary conditions. We transform their results from the time domain to the spatial
domain using the transformation

x

L
=
cgt

cT
≈ 1

2

t

T
,

which has also previously been employed by Benjamin & Feir (1967) and Lake
et al. (1977). With this transformation the beat length computed by Landrini (for the
case of ka = 0.100 and δ = 0.10) is approximately 140 wavelengths, i.e. in excellent
agreement with our result.

Landrini et al. also investigated the accuracy of the cubic Schrödinger equation
(NLS) and a Hamiltonian method by Krasitskii (1994). For the case of ka = 0.100
and δ = 0.10, they found that Krasitskii’s method was very accurate, while the
NLS resulted in a beat length of only 108 wavelengths, i.e. 23% in error. Stiassnie
& Kroszynski (1982) derived the following analytical solution based on the NLS
equations:

Lbeat

L
=
cg

c

Tbeat

T
≈ cg

c

(
1.674− 4 ln β

2π(ka)2

)
,

and this leads to a beat length of 108.7 m, i.e. in good agreement with Landrini et
al.’s numerical solution of the NLS.

In a further investigation, Landrini et al. concluded that with a small increase in
ka, the relative performance of Krasitskii’s method rapidly deteriorated in the second
cycle of modulation and for the case of ka = 0.105 and δ = 0.10, they found the
correct beat length to be 113 wavelengths, while Krasitskii’s method resulted in 135
wavelengths. Our computation of this test case is shown in figure 14(b) and with a
beat length of 112 wavelengths it is in very good agreement with Landrini’s result.

6.3.2. Frequency downshift

Wind-wave spectra are known to shift towards lower frequencies as the fetch
increases. In an energy-conserving two-dimensional system, a local frequency down-
shift will occur near the peak of modulation due to the unequal growth of the
sidebands, but no permanent downshift will occur because the modulational process
will be cyclic as demonstrated in the previous example. In contrast, the experiments
by Melville (1982) showed that for steeper waves breaking typically occurs at the
peak of the modulation, i.e. when the lower sideband is at its maximum, and this
opens up for a permanent downshift of the peak frequency.

The phenomenon of frequency downshift has been modelled with Dysthe’s fourth-
order Schrödinger equations by Lo & Mei (1985), who examined the effect of viscous
dissipation due to friction; by Trulsen & Dysthe (1990), who incorporated the effect
of wave breaking by introducing a damping term activated for waves exceeding a
certain height; and by Hara & Mei (1991), who modelled the forcing by a weak
wind and the damping by eddy viscosity. These efforts, amongst others, indicate that
downshift of two-dimensional Stokes waves appears to be related to damping effects
in a rather insensitive manner, and, without any dissipative effects added, permanent
shift of the peak frequency does not occur in two dimensions. In three dimensions, it
turns out that a permanent downshift can occur without the influence of dissipation,
as demonstrated by Trulsen & Dysthe (1997), who investigated the effect of oblique
sideband modulation.

Recently, Tulin & Waseda (1999) conducted a number of seeded experiments
to investigate the importance of wave breaking for modulational instability. In the
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absence of wave breaking, they observed near recurrence as discussed above, although
complete recurrence was prevented by some energy transfer to higher frequencies.
In experiments involving local wave breaking, they found (in their figure 18) an
overall decrease of the carrier wave as well as of the higher sideband, while the
lower sideband was increased relative to the non-breaking event. As a result a state
of downshifting took place with the carrier wave and the lower sideband nearly
coinciding in magnitude.

In the following, we consider one of their test cases involving a brief event of wave
breaking near the first modulational peak. We use a depth of 1.2 m (rather than the
2.1 m used in the experiment), a carrier wave of frequency 1.14 Hz (wavelength 1.2 m)
and a wave steepness ka = 0.133. The sideband waves are generated at the boundary
at frequencies 1.029 Hz and 1.267 Hz (corresponding to δ = 0.785ka) with relative
amplitudes β = 0.03. Two simulations have been made with grid sizes of 0.05 m and
0.025 m, respectively, and the results are almost identical except in the vicinity of
the first modulation peak. In this region the waves become very steep, and while
the coarse-grid simulation survives, the fine-grid simulation eventually breaks down,
indicating the necessity of a breaking model. The coarse-grid results are shown in
figure 15(a). At the first modulational peak, which occurs at x/L ≈ 44, the carrier
mode has a local minimum, while the lower and upper sidebands increase to a local
maximum. At this point the lower sideband is by far the largest of the three. Beyond
this point, the trend in figure 15(a) deviates from figure 14(a, b) as the lower sideband
starts to oscillate around a much higher mean level and never returns to its initial
very low level, while the upper sideband stays at a considerably lower mean level
than the lower sideband. This increase of asymmetry between the lower and upper
sidebands indicates an effective frequency downshift, and as a result the wave train
starts to vary between two extreme states: a state with dominant lower sideband and
insignificant carrier wave and a state where the lower sideband and the carrier are of
almost equal size.

Tulin & Waseda concluded that frequency downshift cannot occur unless dissipation
is involved. Our model results do not contradict this conclusion, because although we
have not attempted to model the local wave breaking occurring at the first peak of
modulation, the relatively coarse grid resolution has apparently introduced a certain
amount of numerical dissipation. As a result, our coarse-grid results turn out to agree
fairly well with the experimental results of Tulin & Waseda, as shown in a close-up in
figure 15(b). Notice that beyond the first modulational point at x/L ≈ 44, we slightly
underestimate the lower sideband and slightly overestimate the carrier wave. This
indicates that our model results involve some, but too little, dissipation compared to
the experimental results. Obviously the way to proceed is to refine the grid size and
to introduce a breaking module in the model. This work is in progress.

6.4. Nonlinear shoaling on a mildly sloping beach

Ting & Kirby (1994) presented measurements for spilling breakers on a plane sloping
beach with a slope of 1/35 starting at a depth of 0.40 m. As input they generated
regular waves with a wave period of 2.0 s and a wave height of 0.125 m. At the
boundary, we generate a stream-function solution with these parameters. Our model
does not yet include the feature of wave breaking, and instead we absorb the
shoaling waves with a sponge layer placed in the region from x = 6 m to x = 10 m
(see figure 16). This figure shows snapshots of the computed spatial variation of the
surface elevation, and the envelope is seen to be extremely regular without undulations.
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Figure 15. (a) Spatial evolution of the amplitudes of the carrier wave and the two sidebands.
h = 1.2 m, f = 1.14 Hz, 1.029 Hz and 1.267 Hz, kh = 6.28, ka = 0.133, δ = 0.785ka, β = 0.03,
dx = 0.05 m, dt = 0.05 s. Full line: carrier wave amplitude; dashed-dot line: lower sideband
amplitude; dashed line: upper sideband amplitude. Computed with σ = −0.5. (b) Same as (a) but
including measurements by Tulin & Waseda (1999), for lower sideband (cross), upper sideband
(square), carrier wave (star). Dotted line with plus symbols: theoretical prediction from Benjamin
& Feir theory.

This confirms that the model equations support the stream-function solution without
releasing spurious higher harmonics. Up to the point of initial breaking at x = 6 m,
the experimental data of the crest and trough elevations is in excellent agreement with
the computations, and the only difference is a small amount of reflection which shows
up in the measured data due to the process of wave breaking. Our sponge layer does
not reflect any noticeable amount of energy, but naturally the rate of decay inside
the sponge region is quite different from the measured decay.

Figure 17 shows a comparison of the computed and measured wave profile at the
point of initial breaking (x = 6.0 m) and we notice a remarkable agreement between
the profiles. Only in the trough region do some minor discrepances show up as the
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Figure 16. Nonlinear shoaling. Snapshots of the computed spatial variation of the surface elevation.
Symbols: experimental data from Ting & Kirby (1994) showing wave crest elevation and wave
trough elevation. Sloping beach with slope 1/35 starting in a depth of 0.4 m. Calculated using:
stream-function theory, wave period 2.0 s and height 0.125 m, with σ = −0.5.
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Figure 17. Nonlinear shoaling. Time series of the surface elevation near the point of incipient
breaking. Full line: computed with σ = −0.5. Dotted line: experimental data from Ting & Kirby
(1994). Data as shown in figure 16.

experimental data contain higher harmonics which are absent in the computation.
We can conclude that, in a future breaking model, it will be possible to use physically
realistic measures for breaking criteria. Such a model is at present being developed
and will be reported later.

7. Summary and conclusions
A new Boussinesq-type method has been presented with the objective of improving

the accuracy of the vertical variation of the velocity field as well as the accuracy of
linear and nonlinear properties. The method is applicable to highly nonlinear waves
in shallow water as well as to highly nonlinear and dispersive waves in deep water. It
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is restricted to mildly sloping bathymetries but can be extended to steeper slopes. The
derivation procedure involves a number of steps, which turn out to be key elements
in achieving highly accurate solutions.

First, the dynamic and kinematic conditions at the free surface are expressed in
terms of velocity variables defined directly on the free surface and, as pointed out by
AMS99, the time-stepping of these exact equations ensures that nonlinear and linear
properties are equally accurate, in contrast to conventional Boussinesq formulations.

Second, the velocity field is found as an approximate solution to the Laplace
equation and it is expressed in terms of finite series expansions involving the horizontal
and vertical velocity components at an arbitrary z-level, ẑ. This z-level, which is
assumed to be a constant fraction of the still-water depth, is determined by minimizing
the depth-integrated error of the linear velocity profile (leading to the choice of
ẑ = −0.5h). However, the possibility of minimizing the error in linear dispersion is
also investigated (leading to the choice of ẑ = −0.2h).

Third, we keep the vertical velocity component at ẑ as an unknown and avoid to
expressing it in terms of the horizontal component via the truncated tan-operator at
the sea bottom. This is the key to avoid introducing severe restrictions on the radius
of convergence of the velocity expansions, which occurs in most other Boussinesq
formulations (see Madsen & Agnon 2002).

Fourth, the introduction of pseudo-velocity variables and a further operator ma-
nipulation of the kinematic condition at the sea bottom brings Padé approximants
into the linear dispersion relation, as well as further improving the accuracy of the
velocity profile.

As a result, the linear dispersion relation becomes a Padé [8, 10] type expansion of
the fully dispersive solution and this expression turns out to be highly accurate for kh
as high as 25 for ẑ = −0.5h and 40 for ẑ = −0.2h. Generally speaking, the nonlinear
properties are as accurate as the linear properties and as shown in § 4, an error bound
of 2% in the crest velocity allows us to use the method up to kh ≈ 25 for ẑ = −0.5h
and to 39 for ẑ = −0.2h. If the vertical variation of the velocity profile and of the
pressure is of interest, ẑ = −0.5h should be chosen and in this case high accuracy can
be obtained even for highly nonlinear waves up to kh ≈ 12. In fact it is also possible
to use ẑ = −0.2h, but in this case the analytical velocity coefficients (16a, b) should be
replaced by numerically optimized coefficients as discussed by Madsen et al. (2002).

Finally, we emphasize that the concept presented in this paper is by no means
limited to a formulation including fifth-derivative operators. For some purposes it
may be more attractive to use a formulation limited to third-derivatives, in which
case the computational effort as well as the accuracy will be less. Such possibilities,
together with two other ways of truncating the infinite series expansions, are presented
and analysed in Madsen et al. (2002). It should also be mentioned that a completely
different Boussinesq-type approach has been pursued by Bingham, Agnon & Madsen
(2002), which presents a Fourier–Boussinesq formulation which involves the inclusion
of a Fourier transform.

This work was financially supported by the Danish Technical Research Council
(STVF grant no. 9801635). Inspiring discussions with Dr Hemming Schäffer are also
acknowledged.
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